Time Lag recurrent Neural Network model for Rainfall prediction using El Niño indices

نویسندگان

  • N. A. Charaniya
  • S. V. Dudul
چکیده

Indian summer monsoon rainfall is a process which is dependent on number of environmental and geological parameter. This makes it very hard to precisely predict the monsoon rainfall. As India is agriculture based country, a long range monsoon rainfall prediction is crucial for proper planning and organization of agriculture policy. Severe hydrological events, such as droughts, may result in decline of agricultural output, affecting both inhabitants and national economy of the country. El Niño and Southern Oscillation (ENSO) play an important role in the success or collapse of Indian monsoon development. The year-to-year variability in monsoon rainfall could cause extreme droughts and floods in the country. El Niño is an oscillation of the ocean-atmosphere system in the tropical Pacific having important consequences for weather around the globe. Understanding the relationship between ENSO and Indian monsoon rainfall is crucial to reduce negative impact or to take benefit of positive conditions. In this paper, a focused time lag recurrent neural network model has been proposed in order to determine the temporal relationship between ENSO and Indian summer monsoon rainfall.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

Temporal Disaggregation of Rainfall Data Using Artificial Neural Networks

Seasonal rainfall in many regions is influenced by global climatic parameters such as El Nino Southern Oscillation (ENSO), La Nina. Seasonal rainfall predictions are based on such Global climatic parameters. However, for operational purposes, such as reservoir operation or river basin management in a larger context, rainfall data at a finer time interval are required. In this paper, a temporal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013